
How to code a 2D
platformer game

Dan Milward and Gerard MacManus

Year 7-10

Book 1 of 2
Develop a video game

and learn to code

In Gamefroot you can create games, interactive stories and
animations and share them with others around the world.

Gamefroot is an online game creation platform that runs on
laptop and tablet browsers.

This booklet and the Te Hiko Tākaro programme were
developed by Gamefroot, in association with Te Puni Kōkiri:
the ministry of Māori Development, Pātaka Art + Museum, and
the Ministry of Education.

The learning outcomes in this booklet align with the New
Zealand Curriculum (Digital Technologies learning areas).
Completing this booklet is worth over 6 NCEA credits!

To get started head to
the Gamefroot website
by using the link below,
open up the Editor, and
get everything set up.

With the help of this
booklet, we are going
to make a platformer game
like Super Mario Bros, and
publish it online!

When you sign in with your account,
Gamefroot will take you to the Templates
page. From there, select New Blank Game.
This opens up the Game Editor.

In Gamefroot you can make just about
any 2D game you can think of. Any time
you want to create a new game, just go
to the Gamefroot website and select
Blank Game.

https://make.gamefroot.com/

Step 1: Gamefroot

Now that you are in the
Level Editor, let’s grab an Asset
Pack from the Marketplace.

Packs contain collections of
characters, objects, artwork
and scripts that you can
use to build games.

Click the Marketplace icon on
the very left of your screen, as
seen on the diagram to the left.

Step 2: Game assets

Click to open the Marketplace,
and find the Nga Tākaro pack.

Click on the pack. On the next
screen, click Get it for Free in the
bottom right. This loads all of the
pack’s assets into your game.

Step 3: ‘Nga Tākaro’ Pack

Find the Layers panel. Click
on the New Layer icon and
select New Tile Map.

Tile assets such as platforms
and water tiles can only be
drawn on tilemap layers.

Step 4: Using Layers

After creating the Tilemap
layer, create two new layers.

The top layer will be for the player
character. The bottom layer will be
for all the objects in the level such
as trees, obstacles, and items. The
Background layer, which already
exists, is for background images
and scenery.

Double-click on a
layer to rename it.

Step 5: More Layers!

This is the Toolbar, consisting of
Select, Brush, Erase, and Pan.
Use Select to move, rotate, and
scale assets, and use Pan to
move your view around the level.
Next, you will set up a Tracer
Map and use it as a guide to
help design your first level.

Step 6: The Toolbar

Make sure that the
Background layer is
selected. Find the
Tracer Map in the
Game Objects panel.
It will look like the
grey block image
above. Click on it
and place it within
your level.

Step 7: Tracer Maps

Select
Brush

Text

Erase
Pan

Switch to the Tile Map layer and select the grassy tile brush
from the Game Objects panel. Use this brush to create a series
of platforms by clicking and dragging across the tilemap.

Step 8: Using Layers

Now, select a playable character for the player to control.
Find a playable character in the Game Objects panel.
Choose either the girl or the boy character.

Select the Player layer then place your chosen character
into the level.

Step 9: Playable Characters

Now, it is time to save your
game and test it out.

To save, click File on the Menu
Bar and select Save Game.

Step 10: Save your progress

To test or play your game,
just hit the big orange PLAY
button in the top right!

Step 11: Playtesting

This tutorial, along with
many others, are available
in the Tutorials sidebar.

Click on the Tutorials button
in the top menu bar, select
the Intermediate Resources,
and then open the
Platformer 101 tutorial.

Step 12: Tutorial sidebar

CODING CONVENTIONS
Coding conventions are style guidelines for programming.
They typically cover:

Naming and declaration rules for variables and functions
Rules for the use of spacing and comments
Programming practices and principles

Coding conventions

Secure quality
Improve code readability
Makes code maintenance easier

Naming conventions
When making games in Gamefroot, we should follow widespread
JavaScript naming conventions. These allow us to distinguish
variables, classes, and constants, so we can more easily see
what code is supposed to do.

Variables
Variables are places to store changeable data. Name them in
Camel Case. Start by making all capital letters lowercase. Then
capitalise the first letter after each space. Finally, take out all
the spaces. For example starting position x becomes
startingPositionX.

A class is a specific kind of object that can be distinguished from
other objects, like a name or type. For example, two obstacles
have the same class. Name them in Pascal Case. This is just like
Camel Case, but the first letter is capitalised too. For example,
you win becomes YouWin.

CLASSES and UNIQUE IDENTIFIERS

Constants are places to store data that never changes.
Name them in Screaming Snake Case. Start by making all
letters capitals. Then replace all spaces with underscores. For
example, starting position x becomes STARTING_POSITION_X.
Constants look distinctive, so you can quickly tell if an item
is supposed to change.

To tidy code in Gamefroot, right-click
on the Script Stage and click Clean up
Blocks. This makes it much easier to
find code in a large script.

CONSTANTS

CODE FORMATTING

Comment blocks are used to note down comments in your code.
Comments do not run any instructions, or display in your game -
they are solely used to explain your code. This is useful for when
you come back to your code at a later date, or when someone
else views it so they have a better understanding of what your
code is supposed to do.

Comment blocks are found at the bottom of Control Flow, and
start with // (just like comments in JavaScript code).

CODE COMMENTS

In this chapter, you will add a script to the player and
program it to move around the level. To achieve this,
you will use inputs and outputs, event-driven
programming, sequencing, and iteration, also
known as loops.

Once you have set up your game, right-click on the player
character and click Add Script. Open the Events palette on the left.
Find the When backspace/delete pressed block and drag it out
into the workspace. Change backspace/delete to right arrow.

Adding a player script

Find set velocity x 0 in Physics and drag it into the
When backspace/delete pressed block. Change 0 to 200.

Now, hit the PLAY button and test your game. The character
will move to the right when you press the right arrow key.

After you are done testing, close the game and return
to the Script Editor.

So far, your character can only move to the right. Let’s add the
ability to move in other directions.

Right-click and duplicate the When right arrow pressed block.
Change right arrow to left arrow and velocity from 200 to -200
on the new block.

Duplicate the block again and this time, change the new
block to up arrow. Next, change velocity from x to y and
the number to -500.

Hit PLAY and test moving left and up. See what happens? The
direction keys work but the player doesn’t stop moving.

To fix this, you need to add gravity to the game, and program the
player character to stop moving when a direction key is released.

Let’s code Gravity to start working as soon as the level starts.
Grab a When the level starts block from the Events palette.
Drag Set gravity x 0 into it from Physics. Change x to y and 0
to 800.

By default, objects won’t react to gravity. Grab Set reacts to
gravity true block from Physics. Place it under Set gravity y to
800. This ensures that the player character will fall back to the
ground after jumping up.

Adding Gravity

The next step is to detect when a key is released. Let’s program
ours so that the character will stop moving when the direction
key is released.

Duplicate the When left arrow pressed block, change pressed
to released, and set the velocity to 0.

Follow the same process to make the player stop moving when
the right key is released.

Next let’s code a camera to follow the player as you move around
the game. This means that as you move around the level, you
won’t ever disappear off the side of the screen.

To do this, grab the Constantly block from Events. Then connect
the center camera on myself block from Looks.

Game Cameras

Test your game by hitting PLAY. Use the arrow keys to check
everything we’ve built is working

The final step of Chapter 1 is to make the player character
animate when they move around.

Each character in the Nga Tākaro pack has animation states for
running, jumping, climbing and standing still (idle). Let’s make the
player character run when the left and right arrow keys are
pressed.

Grab the play animation name block from the Animation palette,
and connect it into your When right arrow pressed block.
Change the name to run. This will trigger the running animation
to play. Grab the same block and put it in When left arrow
pressed as well.

Animating the player

Test your game by hitting PLAY. Run around and make sure
the player animates nicely.

Save your game instructions

Great work! You’ve learnt how to use:

Inputs & outputs Sequencing

Event-driven programming Iteration (loops)

Confirmed by

To make the player go back to standing still, you need to trigger
the players idle animation. To do that, put play animation name
blocks into When left arrow released and When right arrow
released. Change the animation names to idle.

Flipping the player
Finally, let’s flip the player to face left and right depending on the
key you press. Open the Transform palette and drag a set scale
x of myself to 1 block inside When left arrow pressed.

Open the Transform palette again and drag a set scale x of
myself to 1 block inside When right arrow pressed script.
Change 1 to -1. This will scale (resize) the player on the x axis
(horizontally) to make them appear flipped.

In video games, a collision happens when two objects
intersect or when the distance between those objects
falls below a certain tolerance. In this chapter, you are
going to edit the player script so that it will detect
when it collides with other objects.

Objects will be converted to tiles if placed
on a tilemap layer. To avoid this, make sure
that the Objects layer is selected in the
Layers panel.

Place some objects onto the level for the
player to collide with. In our example we
are using the wooden spikes.

Collision Detection

Right-click on one of the obstacles and click Add Script. Open
Events and drag out a When created block. Then open Sensing
and drag a Add tag tag name on myself block inside it. Change
tag name to Obstacle and close the Script Editor. Save the script
as Obstacle.

Now, let’s add this script to all of your
obstacles. You can reuse this script on any
object that you want to be collidable.

To do this, open the Code sidebar, and
select your Obstacle script and click
on any object in the level. This will
attach the new script and turn the
object into an obstacle.

Next, let’s code the player to detect when it collides with another
object and restart the level.

Right-click on the player character and click Edit Script. Open
the Physics palette. Drag a When I am touched get toucher
block into the workspace. Click on Control Flow. Drag an if do
block inside the When I am touched get toucher block. This
block will allow us to check if a condition is true. . .

Now we want to check if the object the player touched was tagged
as an obstacle. Click on the Sensing palette and drag a myself has
tag name block into the empty if slot. Open Variables, drag a
instance toucher block onto the myself block to replace it, delete the
myself block that pops out. Change the tag name to Obstacle.

If the instance toucher is an obstacle, we will make you lose by
restarting the level. Finally, grab go to next level from Control
Flow, and change next to current.

Hit PLAY to test what we have built so far. The game should
restart every time the player collides with an obstacle.

Non collidable objects

Start by selecting the Background layer. Find a background
image from Media sidebar and place it on this layer. Right-click
on your image and click Add Script.

Drag a When created block from the Events palette into your
workspace, then drag set physics enabled true block from
Physics into it. Change true to false.

Sometimes we do not want the player to collide with an object,
such as background images. In this step we are going to code
our game’s background to be non-collidable.

The second half of our script will lock the background image in
place so that it looks the same no matter where the player goes.

Click on the Events palette and drag a Constantly block into
your workspace. Open the Transform palette and find a set x
position of myself to 0 block and place it inside Constantly.

Open Looks and drag a camera x block onto the 0 block. This will
pop out the 0 block which you can delete.

Confirmed by

Great work! You’ve learnt how to use:

Selections with conditional logic If statements

Confirmed by

Right click and Duplicate the set x position of myself to
camera x blocks, connect the duplicated blocks under the set x
position of myself to camera x and change both x values to y.

Lastly, you should add a code comment to describe what your
code is supposed to do. Open Control Flow, drag an
 // Add Comment block into the Constantly block, and then
type out a description of what your code is supposed to do.

Code comments are useful for when you come back to your
code later, or when someone else is reading over your code so
that they can easily understand it.

In Gamefroot, game levels are like chapters in a book.
Players work their way through one, and when finished,
move on to the next. In this chapter, you will add levels
to your game and learn how to navigate between them.

Levels

Start by adding a new level to
your game. To do this, click the +
button, which will add a second
level. Then right-click on level 2
and click the Properties button.
This will open the levels sidebar.

In the Levels sidebar, rename
Level 2 to Start Screen.

Drag this level up above Level 1
so that Start Screen becomes
the first level.

Open the Start Screen level by
clicking on it. In the sidebar,
click Media and find objects to
fill up your empty Start
Screen. Include a Timata
(Start) button.

The Timata button will be what you press to start the game.

Grab a When the player presses myself block from the Events
palette and put it in your workspace. Open Control Flow and drag
a go to next level block inside it. Then save and close this script.

Your levels should now be arranged like this:

Now add two more levels. Open the Levels sidebar and
rename your third level to You win, and rename your
fourth level to You lose.

Add objects and decorations to level 3 and level 4 so that
each level looks like a proper You win and You lose screen.

You Lose screen

Start screen
Level - 1 (your playable level)
You Win screen

Next, let’s add a trophy object to
the game to take the player to the
You win level.

Switch back to the playable level, select
an object from the Media sidebar and
put it in your level.

Add a new script to this object. Drag out a When created
block from Events and put an add tag tag name on myself
block inside it (from Sensing). Change tag name to YouWin.

Now, let's make the player detect when it collides with the
trophy. Open the player script find your existing collision
detection code.
Right-click on the if do block and click Duplicate. Connect the
new blocks underneath the first do block.

Click on Operators and drag a 0 block on to the next level block.
This will pop the block out which you can delete. Change 0 to 3
(the You win level). Your code should look like this:

Now let’s tell the collision detection code
to send the player to the You lose
screen instead of resetting the level
when they collide with an Obstacle.

Drag out the current level block from go
to current level block and delete it. Open
Operators and drag a 0 block into the
empty go to block and change the
number to reflect what your game’s You
lose level number is. Your code should
look like this.

In the next step, we will create a Replay button so that if the
player loses they can play your game again.

Great work! You’ve learnt how to use:

Conditional logic If statements

Mouse input events

Confirmed by

Great work on Chapter 3! Make sure to save your work.
If everything is done right, the player should now see a Start
screen when they load the game, a You lose screen when they
die, and a You win screen when they collect the trophy.

Open the Media Sidebar and find the Timata button. Add the
button to both the You win and the You lose levels.

Add a new script to one of these buttons. Open Events drag a
When the player presses myself block into your workspace.
Open Control Flow, drag a Go to next level inside the When
the player presses myself block. Change next to first and
save the script.

Open the Code sidebar and add this new script to the other
Timata button.

In this chapter, you will create collectable objects that
increase the player’s score on collision. You will also edit
the player script and implement number variables to
create a basic scoring system.

Let’s start by adding some more
objects to your level. This time choose
objects for the player to collect. We
use a coin in our example.

Add a new script to one of them. Open
Events and drag a When created block
in your workspace. Open Sensing. Drag
an add tag tag name on myself block
in to the When created block and
change tag name to Collectable.

Variables

Close and save the script. Open the Scripts panel and add your
new script to all the collectable objects.

Now let’s create a number variable to store the players score.
You’re going to code the score to increase every time the player
touches one of the collectable objects.

Close and save the script. Hit the PLAY button to see your
score on-screen. It won’t increase yet.

Finally, find a set x position of myself to 0 block from
Transform and place it inside your Constantly block. Replace
the myself block with instance textfield from Variables and
replace 0 with a camera x block from the Looks palette.
Duplicate these blocks and change the two x values to y.

Now open the player script.
Open Variables, and drag set
true/false i to the bottom of
the When the level starts
block.

Score and change true/false to number. Finally, grab a 0 block
from Operators and put it in the blank space next to score.

Now grab a create new textfield from the Draw palette and
connect it to the bottom of your script. Type 0 into the textfield.

Click on i, select new variable
from the list, name the variable

Now we’ll make the score number increase when you pick up one
of the collectables.

Inside When I am touched, get toucher, duplicate if instance
toucher has tag YouWin (by right-clicking on it) and drag the
duplicated block underneath the original block. Rename YouWin
to Collectable and then delete go to 3.

To pick up the collectable object, open Control Flow and drag
destroy myself inside the if do block. Delete myself and
replace it with instance toucher (from Variables).

To increase the score number, open Variables and drag set
number score to underneath destroy instance toucher. Then
open Operators and connect 1 + 1 into that block, and drag
number score (from Variables) into the left side of the + block.

Great work! You’ve learnt how to use:

Variables Data types

Confirmed by

Connect the create text with block to the set text of block.
Add the number score variable to one of the empty spaces.

Test out the game. If everything has been set up correctly, when
the player collides with one of the collectable objects, the score
number will increase and the collectable will disappear.

Lastly, to update the textfield, open Draw and drag Set text of
instance textfield underneath set number score to score + 1.

Now, grab the number score block and put it in the set text of
instance textfield to block. But it won’t connect! This is
because it is a number value. The set text of block expects
text, not a number. Click on number and change the value to
text. Do this with the block create text with from Operators.

In this chapter, you are going to code a Non-player
character (NPC) to patrol back and forth from one
place to another.

Place an object into your level that will become your patrolling
character. Choose an area in your level with enough space on
either side for the patroller to move around.

Add a new script to this object and drag out a When created block
(from Events). Drag Add tag (from Sensing) into it and change tag
name to Obstacle.

Add Set true/false i (from Variables) to this script block. Click on i
and create a new variable with the name startingPositionX. Change
true/false to number.

Add a Set x position of myself block (from Transform) into the set
number startingPositionX. Add set x velocity (from Physics) below,
and change x to 200

Next, we will stop the patrolling object wandering too far away
from where it started. You will do this by comparing its current
position to its original position, using a comparative operator..

Grab a Constantly block (from Events) and drag an if do block
into it (from Control Flow). Add the _=_ comparator to the if
slot. This is in the Operators panel, in the Boolean section.
Change it to _>_ (greater than). Then add x position of myself
(from Transform) into the empty space on the left, and _+_
(from Operators) into the right of the _>_.

Within this _+_ block, add number StartingPositionX to the left,
and 0 from Operators to the right. Change 0 to 200, or however
far you want the patroller to move.

Underneath this, add Set x velocity to 0, and change 0 to -200.
Exit, save the script and hit PLAY to test things out.

Next, we will make the patroller turn around when it has reached
its maximum distance. This will make it move back and forth.

Duplicate the x position of myself > number startingPositionX
+ 200 blocks and connect them to the else if slot.
Remove startingPositionX + 200 from the duplicated blocks.
Fill in the empty slot with the startingPositionX variable. Change
> to < (less than).

Start by modifying the if block we
made. Change it to an if else if
statement. This is used to
program different actions
depending upon whether the
condition is true or false.

Duplicate set velocity x -200. Put it in the second do slot. Change
-200 to 200. Save the script and hit PLAY to test your game.

Great work! You’ve learnt how to use:

Comparative operators Variables

If-else selection control structures

Confirmed by

Click on the if do block’s settings
icon. On the pop-up, drag an else
if into the if block. Click on the
settings icon to close this pop-up.

In this chapter, you are going to code an object for the
player throw. You will use conditional logic to determine
where to place the projectile, and to determine in which
direction it needs to travel.

We will now expand our player
character script to throw
objects. The first thing we have
to do is set up our projectile and
get it ready to throw.

Place an object into your level
that will become the throwable
projectile. Right-click on this
object to add a new script.

Drag in the When created block (from Events) and then drag in
set visibility true (from Looks), set physics enabled true (from
Physics), and add tag tag name on myself (from Sensing). Change
both true values to false. Change tag name to Bullet. Then close
and save the script.

The projectile needs to be able to identify the player with a
tag. Open up the player script. Drag out a When created block
(from Events), and add add tag tag name on myself to it (from
Sensing). Change tag name to Player.

Now we'll make the projectile shoot left or right depending on
the direction the player is facing. We'll use an if-else block to
check the player's scale.

Grab an if do block (from Control Flow) and add it into when
spacebar pressed. Click on its settings icon and change it
to an if else if block.

Next, we will make a keyboard trigger which makes the player
character throw the projectile. We will use the Spacebar as our
trigger. Open the projectile script again and add When
backspace/delete pressed (from Events). Change backspace/
delete to spacebar.

Find and drag set visibility true (from Looks) and set physics
enabled true (from Physics) into when spacebar pressed.
Change both false values to true.

Add a _>_ (greater than) block to the first if slot. Place scale x of
myself to the left and 0 to the right. Replace myself with first
instance by tag tag name, and change tag name to Player.

Close and save the script and hit PLAY. When the player presses
Spacebar, the projectile should become visible and fire away
from the player character.

Next, we will position the projectile in front of the player so that
it appears as if they are throwing the object.

Add a set velocity x block to the first do, and set it to 500. Then
duplicate both of these blocks and add them to the else if
section. Change > of _>_ to <, and 500 to -500.

Add a set x position of myself to 0 block to the bottom of the
first do. Swap out 0 for a _+_ block, adding x position of myself
to the left and 100 to the right. Replace myself with first
instance by tag tag name, and change tag name to Player.

Next, duplicate the red set x position block, including everything
we just created, and place this new block under the original.
Change all x values to y, and 100 to 50.

Duplicate both of these blocks and add them to the do slot of
else if. Change the x position of 100 to 50, and the + to a -.

Now the player can throw projectiles. Hit the PLAY button
to test this out.

Great work! You’ve learnt how to use:

Confirmed by

If-else control structures

Next, we will code our projectile to detect when it collides with
an obstacle, then remove that obstacle from the screen. Open the
projectile script.

Drag a When I am touched get toucher block into the script. Add
set visibility true (from Looks) and set physics enabled true
(from Physics). Change both true values to false.

Underneath these, add an if do block. Drag myself has tag tag
name into it (from Sensing). Replace myself with instance
toucher (from Variables), and change the tag to Obstacle.

Finally, grab the destroy myself block (from Control Flow), add it
to do, and replace myself with another instance toucher block
(from Variables).

Close the script and save the game. Hit PLAY. Now, the player
can throw projectiles and destroy obstacles in their way.

In this chapter, you’re going to code player speed
boosts and a teleporter. You will also restrict jumping
to double jumps so that the player can’t stay up in
the air indefinitely.

Speed Boosts

Now tag your speed boost object using a When created block
(from Event) block and an add tag tag name on myself block
(from Sensing). Change the tag name to SpeedBoost.

Close and save this script, and name it SpeedBoost and then
reopen the player script.

Select an object from the Media library to be
your speed boost. Place it into the playable
level. Right-click on the object and create a
script.

In the player script, find your existing When level starts block and
create a new number variable using set true/false i (Variables).
Click on i to create a new variable. Name the variable speed.
Change true/false to number, and drag a 0 block (from Operators)
into the empty space on the right. Change the 0 to 200.

This variable will allow us to vary the players velocity, which we
set up in Chapter 1. Instead of making the player always move at
200 pixels per second, we can update this variable to make the
player go faster or slower.

Find your existing When right arrow pressed block and replace
the 200 block with the number speed block (from Variables).

Then do the same with your existing When left arrow pressed
block. Moving to the left requires negative x velocity, so multiply
your speed variable by -1. Drag a 1 + 1 block (from Operators) into
your workspace. Place your number speed variable inside of the
1 + 1 block on the left. Change + to x, and change the 1 to -1.
Multiplying a positive with a negative value always returns a
negative number.

Now, let’s make the player detect when it collides with the speed
boost object. We will also use a time delay block to set the
speed back to normal after a set period of time.

Start by editing the player character script and find the existing
When touched block. Duplicate one of the if toucher has tag
sections and change the tag to SpeedBoost. Remove the blocks
inside the duplicated if do block.

Add set number speed (from Variables) and set it to 400. Add
destroy myself (from Control Flow) and replace myself with
instance toucher.

Add a 100 milliseconds have passed block (from Control Flow)
and change 100 to 5000 (5 seconds).

Duplicate set number speed to 400 and place it inside 5000
milliseconds have passed. Change 400 to 200. This will set
speed back to normal.

Teleporters

Drag in a When created block (from Events) and add a tag
using an add tag block (from Sensing). Change tag name to
Teleporter1 and add a set immovable true block (from
Physics) underneath it.

Close that script and reopen the player character script. Find
the When I am touched get toucher block and duplicate one of
the if toucher has tag blocks. Add this underneath the previous
if do block and change the tag to Teleporter1.

Add a set x position of myself to 0 (from Transform) inside the
do slot, duplicate it, and change the duplicated x to y.

Select an object from the Media library to be
your Teleporter. Place it into the playable
level. Right-click on the object and create a
script.

In this step we will make it so that the player can double jump
using if statements with variables.

Double Jumps

Next we will set the x and y coordinates.
When the player touches the teleporter,
they will disappear and reappear at these
coordinates.

Close and save the player script. In the
level editor, use the Layers panel to find
the x and y coordinates for your target
location. Write these down and reopen the
player script.

Replace the 0 values from the blocks we just created with the x
and y coordinates from the map. Now test your game.

Open the player script. Find your
existing When up arrow
pressed, and add an if do block.
Click on its settings icon and
add else if.

We will use this if block to check
if the player is vertically still (not
moving up or falling down). Add
the _=_ block (from Operators)
to if.

Great work! You’ve learnt how to use:

User input with selection logic

Confirmed by

If-else selection logic

Confirmed by

Duplicate velocity y = 0 and drag it into else if. Replace
velocity y with number numberOfJumps, and change 0 to 1.
Then duplicate the two blocks in the first do and add them
into the second. Replace 1 with _+_. Place number
numberOfJumps on the left and 1 on the right.

Now, play your game to test your speed boosts, teleporters,
and double jumps. Great work!

Place velocity y (from Transform) on one side of the = block,
and 0 (from Operators) on the other side. In do, create a new
number variable called numberOfJumps (using Create
Variable from Variables) and set it to 1. Add set velocity y
(from Physics) underneath with a value of -500.

In this chapter, you will add another non-player
character to your game, who asks a question or riddle
which the player must answer before they can win your
game. You will also learn how to publish games so that
they can be played by others.

Select a non-player character
object from the Media library.
Place it into your level.
Right-click on the object and
click create a script.

Place the NPC in a position so
that it is blocking the player from
reaching the trophy that will win
the game. Add a new script to the
NPC object.

Start with When created and give it the tag Riddle. Add a set
immovable to true block.

Now open the player script. Find the existing collision detection
code block, and add a new if do section in there.

Duplicate an if instance toucher has tag block and change the
tag to Riddle. Drag this into the new if section and add another if
do block inside.

Now we will ask the player a question, and we will save their
answer with a new variable. Open Variables and drag Set
true/false i inside the if do block. Click on i and create a new
variable. If you want to ask a riddle with a number as the
answer, then set this to a number variable, otherwise set it to a
text variable. Name this variable riddleAnswer.

We don’t want the player opening the riddle many times at
once, so we will check if they haven’t yet started the riddle by
using a new true/false variable. Grab true/false i (from
Variables), _=_ (from Operators), and false (from Operators), and
connect them in the new if do block. Click on i and create a new
variable named riddleStarted.

If they haven’t started the riddle, set true/false riddleStarted
to true (from Variables).

To ask the question, grab prompt for number with message from
Operators (or prompt for text with message if you are asking a
question with a text answer). Connect the prompt block into your
set variable block.

Then type in the question you want to ask inside the quote
marks. In our example we are asking “What is the meaning of life?”

Now we will check if the player typed in the correct answer.
Drag an if do else block underneath your two variable blocks
and attach an _=_ to if. Place riddleAnswer in the left side. On
the right side we need the correct answer (a number or some
text). In this example the correct answer is 42.

If the answer is correct, we will destroy the riddle object. Inside
the do block, add a destroy myself block. Replace myself with
instance toucher (from Variables).

But what if they got it wrong? Within else, add a print block and
change the text to Sorry! Try again soon.

Lastly, place after milliseconds have passed (from Control Flow)
underneath the print block. Change the number to 5000 and add
set true/false riddleStarted to false inside. This resets the riddle
to give the player another try.

Great work! You’ve learnt how to use:

User input with selection logic

Confirmed by

Great work! You have just built an entire video game.
Share it around. Let everyone know that you are a real
Video Game Developer!

Now, let’s publish your game
and share it with your friends
and family.

To publish your game, save it,
and then click on Publish in the
menu bar.

From the dropdown menu
select Publish Online. Give
the game a title and hit
the PUBLISH button.

Gamefroot will compile your
game and give you a link.
Copy it down and share it
with the world.

Supported by

Taiarahia Black, Harko Brown, James Everett,
Jimmy Baird, Luke Smith, Michael Vermeulen,

Malcolm Morrison, Bianca Elkington, Marsella Hippolite,
Reuben Friend, Esme Dawson, Kawika Aipa,

Linda Fordyce, Laura Jones, Lani Evans (and the Vodafone team),
Nick Billowes (and the CORE Education team), Rachel Bolstad,

Heather Moller, Johnson Witehira, Gerard MacManus,
Tim Harford, AKHB, William Young, Benjamin D Richards,

Dave Thornycroft, Dan Milward

and to all of tomorrow’s rangatahi!

With special thanks to

A games industry partnership between

